Title of article :
Using real-coded genetic algorithms for Weibull parameter estimation
Author/Authors :
G. M. Thomas، نويسنده , , R. Gerth، نويسنده , , Pauline T. Velasco، نويسنده , , L. C. Rabelo، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1995
Pages :
5
From page :
377
To page :
381
Abstract :
Genetic algorithms (GAs) represent a class of adaptive search techniques based on a direct analogy to Darwinian natural selection and mutations in biological systems. “Standard” GAs have emphasized the utilization of binary codes. However, recent empirical results have indicated that a chromosome representation which utilizes real values have enhanced the performance of these GAs in certain engineering problems. A real-valued Genetic Algorithm method described in this paper estimates the parameter values from an unconstrained population of data points for a Weibull distribution function using a simultaneous random search function by integrating the principles of the Genetic Algorithm and the method of Maximum Likelihood Estimation. The results of the real-coded GA technique for parameter estimation are compared to the results of the Newton-Raphson Algorithm.
Journal title :
Computers & Industrial Engineering
Serial Year :
1995
Journal title :
Computers & Industrial Engineering
Record number :
924371
Link To Document :
بازگشت