Title of article :
Computing realistic Reynolds-uniform error bounds for discrete derivatives of flow velocities in the boundary layer for Prandtls problem
Author/Authors :
Miller، John J. H. نويسنده , , Shishkin، Grigorii I. نويسنده , , Farrell، Paul A. نويسنده , , Hegarty، Alan F. نويسنده , , ORiordan، Eugene نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-894
From page :
895
To page :
0
Abstract :
In this paper, we describe an experimental error analysis technique for computing realistic values of the parameter-uniform order of convergence and error constant in the maximum norm associated with a parameter-uniform numerical method for solving singularly perturbed problems. We then employ this technique to compute Reynolds-uniform error bounds in the maximum norm for appropriately scaled discrete derivatives of the numerical solutions generated by a fitted-mesh upwind finite-difference method applied to Prandtlʹs problem arising from laminar flow past a thin flat plate. Here the singular perturbation parameter is the reciprocal of the Reynolds number. This illustrates the efficiency of the technique for finding realistic parameter-uniform error bounds in the maximum norm for numerical approximations to scaled derivatives of solutions to problems in cases where no theoretical error analysis is available.
Keywords :
Prandtls problem , Reynolds-uniform error bounds , singular perturbation problem , experimental error analysis
Journal title :
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Serial Year :
2003
Journal title :
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Record number :
92456
Link To Document :
بازگشت