Title of article :
Parameter-uniform numerical methods for a laminar jet problem
Author/Authors :
Hegarty، Alan F. نويسنده , , Ansari، Ali R. نويسنده , , Shishkin، Grigori I. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-936
From page :
937
To page :
0
Abstract :
We consider the classical problem of a two-dimensional laminar jet of incompressible fluid flowing into a stationary medium of the same fluid. The equations of motion are the same as the boundary layer equations for flow past an infinite flat plate, but with different boundary conditions. Numerical experiments show that, using appropriate piecewise-uniform meshes, numerical solutions together with their scaled discrete derivatives are obtained which are parameter (i.e., viscosity v) robust with respect to both the number of mesh nodes and the number of iterations required for convergence. While the method employed is nonconservative, we show with the aid of numerical experiments that the loss in conservation of momentum is minimal.
Keywords :
jet problem , piecewise-uniform mesh , boundary-layer equations , parameter-robust approximations
Journal title :
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Serial Year :
2003
Journal title :
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Record number :
92459
Link To Document :
بازگشت