Title of article :
Hybrid genetic algorithm with adaptive local search scheme
Author/Authors :
YoungSu Yun، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2006
Pages :
14
From page :
128
To page :
141
Abstract :
This paper proposes a hybrid genetic algorithm (a-hGA) with adaptive local search scheme. For designing the a-hGA, a local search technique is incorporated in the loop of genetic algorithm (GA), and whether or not the local search technique is used in the GA is automatically determined by the adaptive local search scheme. Two modes of adaptive local search schemes are developed in this paper. First mode is to use the conditional local search method that can measure the average fitness values obtained from the continuous two generations of the a-hGA, while second one is to apply the similarity coefficient method that can measure a similarity among the individuals of the population of the a-hGA. These two adaptive local search schemes are included in the a-hGA loop, respectively. Therefore, the a-hGA can be divided into two types: a-hGA1 and a-hGA2. To prove the efficiency of the a-hGA1 and a-hGA2, a canonical GA (cGA) and a hybrid GA (hGA) with local search technique and without any adaptive local search scheme are also presented. In numerical example, all the algorithms (cGA, hGA, a-hGA1 and a-hGA2) are tested and analyzed. Finally, the efficiency of the proposed a-hGA1 and a-hGA2 is proved by various measures of performance.
Keywords :
Adaptive local search scheme , Adaptive local search technique , Hybrid genetic algorithm
Journal title :
Computers & Industrial Engineering
Serial Year :
2006
Journal title :
Computers & Industrial Engineering
Record number :
925430
Link To Document :
بازگشت