Title of article :
A genetic algorithm for the Flexible Job-shop Scheduling Problem
Author/Authors :
F. Pezzell، نويسنده , , A. G. Morganti، نويسنده , , G. Ciaschetti، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2008
Abstract :
In this paper, we present a genetic algorithm for the Flexible Job-shop Scheduling Problem (FJSP). The algorithm integrates different strategies for generating the initial population, selecting the individuals for reproduction and reproducing new individuals. Computational result shows that the integration of more strategies in a genetic framework leads to better results, with respect to other genetic algorithms. Moreover, results are quite comparable to those obtained by the best-known algorithm, based on tabu search. These two results, together with the flexibility of genetic paradigm, prove that genetic algorithms are effective for solving FJSP.
Keywords :
Job-shop scheduling , Flexible manufacturing systems , Genetic algorithms
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research