Title of article :
WBMOAIS: Anovelartificialimmunesystemformultiobjectiveoptimization
Author/Authors :
Jiaquan Gao *، نويسنده , , JunWang، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
12
From page :
50
To page :
61
Abstract :
This studypresentsanovelweight-basedmultiobjectiveartificialimmunesystem(WBMOAIS)based on opt-aiNET,theartificialimmunesystemalgorithmformulti-modaloptimization.Theproposedalgo- rithm followstheelementarystructureofopt-aiNET,buthasthefollowingdistinctcharacteristics:(1)a randomly weightedsumofmultipleobjectivesisusedasafitnessfunction.Thefitnessassignmenthas a muchlowercomputationalcomplexitythanthatbasedonParetoranking,(2)theindividualsofthe population arechosenfromthememory,whichisasetofelitesolutions,andalocalsearchprocedure is utilizedtofacilitatetheexploitationofthesearchspace,and(3)inadditiontotheclonalsuppression algorithm similartothatusedinopt-aiNET,anewtruncationalgorithmwithsimilarindividuals(TASI) is presentedinordertoeliminatesimilarindividualsinmemoryandobtainawell-distributedspread of non-dominatedsolutions.Theproposedalgorithm,WBMOAIS,iscomparedwiththevectorimmune algorithm (VIS)andtheelitistnon-dominatedsortinggeneticsystem(NSGA-II)thatarerepresentativeof the state-of-the-artinmultiobjectiveoptimizationmetaheuristics.Simulationresultsonsevenstandard problems (ZDT6,SCH2,DEB,KUR,POL,FON,andVNT)showWBMOAISoutperformsVISandNSGA-IIand can becomeavalidalternativetostandardalgorithmsforsolvingmultiobjectiveoptimizationproblems.
Keywords :
Facility layout , Sequence-pair representation , Top-down approach , Mixed-integer programming
Journal title :
Computers and Operations Research
Serial Year :
2010
Journal title :
Computers and Operations Research
Record number :
927621
Link To Document :
بازگشت