Author/Authors :
Jiaquan Gao *، نويسنده , , JunWang، نويسنده ,
Abstract :
This studypresentsanovelweight-basedmultiobjectiveartificialimmunesystem(WBMOAIS)based
on opt-aiNET,theartificialimmunesystemalgorithmformulti-modaloptimization.Theproposedalgo-
rithm followstheelementarystructureofopt-aiNET,buthasthefollowingdistinctcharacteristics:(1)a
randomly weightedsumofmultipleobjectivesisusedasafitnessfunction.Thefitnessassignmenthas
a muchlowercomputationalcomplexitythanthatbasedonParetoranking,(2)theindividualsofthe
population arechosenfromthememory,whichisasetofelitesolutions,andalocalsearchprocedure
is utilizedtofacilitatetheexploitationofthesearchspace,and(3)inadditiontotheclonalsuppression
algorithm similartothatusedinopt-aiNET,anewtruncationalgorithmwithsimilarindividuals(TASI)
is presentedinordertoeliminatesimilarindividualsinmemoryandobtainawell-distributedspread
of non-dominatedsolutions.Theproposedalgorithm,WBMOAIS,iscomparedwiththevectorimmune
algorithm (VIS)andtheelitistnon-dominatedsortinggeneticsystem(NSGA-II)thatarerepresentativeof
the state-of-the-artinmultiobjectiveoptimizationmetaheuristics.Simulationresultsonsevenstandard
problems (ZDT6,SCH2,DEB,KUR,POL,FON,andVNT)showWBMOAISoutperformsVISandNSGA-IIand
can becomeavalidalternativetostandardalgorithmsforsolvingmultiobjectiveoptimizationproblems.
Keywords :
Facility layout , Sequence-pair representation , Top-down approach , Mixed-integer programming