Title of article :
Hybridmetaheuristicswithevolutionaryalgorithmsspecializinginintensificationand
diversification: Overviewandprogressreport
Author/Authors :
M. Lozano، نويسنده , , C.Garc?a-Mart?nezb، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
Nowadays, apromisingwaytoobtainhybridmetaheuristicsconcernsthecombinationofseveralsearch
algorithms withstrongspecializationinintensificationand/ordiversification.Theflexiblearchitectureof
evolutionary algorithmsallowsspecializedmodelstobeobtainedwiththeaimofprovidingintensification
and/or diversification.Theoutstandingrolethatisplayedbyevolutionaryalgorithmsatpresentjustifies
the choiceoftheirspecialistapproachesassuitableingredientstobuildhybridmetaheuristics.
This paperfocusesonhybridmetaheuristicswithevolutionaryalgorithmsspecializinginintensification
and diversification.Wefirstgiveanoverviewoftheexistingresearchonthistopic,describingseveral
instances groupedintothreecategoriesthatwereidentifiedafterreviewingspecializedliterature.Then,
with theaimofcomplementingtheoverviewandprovidingadditionalresultsandinsightsonthislineof
research, wepresentaninstancethatconsistsofaniteratedlocalsearchalgorithmwithanevolutionary
perturbation technique.Thebenefitsoftheproposalincomparisontootheriteratedlocalsearchalgo-
rithms proposedintheliteraturetodealwithbinaryoptimizationproblemsareexperimentallyshown.
The goodperformanceofthereviewedapproachesandthesuitableresultsshownbyourinstanceallow
an importantconclusiontobeachieved:theuseofevolutionaryalgorithmsspecializinginintensification
and diversificationforbuildinghybridmetaheuristicsbecomesaprospectivelineofresearchforobtaining
effective searchalgorithms.
Keywords :
Hybrid metaheuristics , Intensification and diversification , Evolutionary algorithms , Iterated local search
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research