Title of article :
A searchspace“cartography”forguidinggraphcoloringheuristics
Author/Authors :
Daniel CosminPorumbel، نويسنده , , Jin-KaoHao، نويسنده , , PascaleKuntzb، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
We presentasearchspaceanalysisanditsapplicationinimprovinglocalsearchalgorithmsforthegraph
coloring problem.Usingaclassicaldistancemeasurebetweencolorings,weintroducethefollowing
clustering hypothesis: thehighqualitysolutionsare not randomly scatteredinthesearchspace,but
rather groupedinclusterswithinspheresofspecificdiameter.Wefirstprovideintuitiveevidenceforthis
hypothesis bypresentingaprojectionofalargesetoflocalminimainthe3Dspace.Anexperimental
confirmation isalsopresented:weintroducetwoalgorithmsthatexploitthehypothesisbyguidingan
underlying TabuSearch(TS)process.Thefirstalgorithm(TS-Div)usesalearningprocesstoguidethe
basic TSprocesstowardas-yet-unvisited spheres. Thesecondalgorithm(TS-Int)makesdeepinvestigations
within aboundedregionbyorganizingitasatree-likestructureofconnectedspheres.Weexperimentally
demonstrate thatifsucharegioncontainsaglobaloptimum,TS-Intdoesnotfailineventuallyfindingit.
This pairofalgorithmssignificantlyoutperformstheunderlyingbasicTSalgorithm;itcanevenimprove
some ofthebest-knownsolutionseverreportedintheliterature(e.g.for dsjc1000.9).
Keywords :
Graph coloring , Local optima distribution , Search by learning
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research