Title of article :
A searchspace“cartography”forguidinggraphcoloringheuristics
Author/Authors :
Daniel CosminPorumbel، نويسنده , , Jin-KaoHao، نويسنده , , PascaleKuntzb، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
10
From page :
769
To page :
778
Abstract :
We presentasearchspaceanalysisanditsapplicationinimprovinglocalsearchalgorithmsforthegraph coloring problem.Usingaclassicaldistancemeasurebetweencolorings,weintroducethefollowing clustering hypothesis: thehighqualitysolutionsare not randomly scatteredinthesearchspace,but rather groupedinclusterswithinspheresofspecificdiameter.Wefirstprovideintuitiveevidenceforthis hypothesis bypresentingaprojectionofalargesetoflocalminimainthe3Dspace.Anexperimental confirmation isalsopresented:weintroducetwoalgorithmsthatexploitthehypothesisbyguidingan underlying TabuSearch(TS)process.Thefirstalgorithm(TS-Div)usesalearningprocesstoguidethe basic TSprocesstowardas-yet-unvisited spheres. Thesecondalgorithm(TS-Int)makesdeepinvestigations within aboundedregionbyorganizingitasatree-likestructureofconnectedspheres.Weexperimentally demonstrate thatifsucharegioncontainsaglobaloptimum,TS-Intdoesnotfailineventuallyfindingit. This pairofalgorithmssignificantlyoutperformstheunderlyingbasicTSalgorithm;itcanevenimprove some ofthebest-knownsolutionseverreportedintheliterature(e.g.for dsjc1000.9).
Keywords :
Graph coloring , Local optima distribution , Search by learning
Journal title :
Computers and Operations Research
Serial Year :
2010
Journal title :
Computers and Operations Research
Record number :
927688
Link To Document :
بازگشت