Title of article :
A novelcompetitiveco-evolutionaryquantumgeneticalgorithmforstochasticjob shop schedulingproblem
Author/Authors :
Jinwei Gu، نويسنده , , ManzhanGub، نويسنده , , CuiwenCao، نويسنده , , XingshengGu، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
11
From page :
927
To page :
937
Abstract :
In thispaper,anovelcompetitiveco-evolutionaryquantumgeneticalgorithm(CCQGA)isproposedfor a stochasticjobshopschedulingproblem(SJSSP)withtheobjectivetominimizetheexpectedvalueof makespan. Threenewstrategiesnamedascompetitivehunter,cooperativesurvivingandthebigfish eating smallfisharedevelopedinpopulationgrowthprocess.Basedonimprovedco-evolutionideaof multi-population andconceptsofquantumtheory,thisalgorithmcouldnotonlyadjustpopulationsize dynamically toincreasethediversityofgenesandavoidprematureconvergence,butalsoacceleratethe convergence speedwithQ-bitrepresentationandquantumrotationgate.FTbenchmark-basedproblems where theprocessingtimesaresubjectedtoindependentnormaldistributionsaresolvedeffectively by CCQGA.TheexperimentresultsachievedbyCCQGAarecomparedwithquantum-inspiredgenetic algorithm (QGA)andstandardgeneticalgorithm(GA),whichshowsthatCCQGAhasbetterfeasibilityand effectiveness.
Keywords :
Stochastic , Job shop scheduling , Competitive , Co-evolution algorithm , Genetic Algorithm
Journal title :
Computers and Operations Research
Serial Year :
2010
Journal title :
Computers and Operations Research
Record number :
927702
Link To Document :
بازگشت