Title of article :
A novelcompetitiveco-evolutionaryquantumgeneticalgorithmforstochasticjob
shop schedulingproblem
Author/Authors :
Jinwei Gu، نويسنده , , ManzhanGub، نويسنده , , CuiwenCao، نويسنده , , XingshengGu، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
In thispaper,anovelcompetitiveco-evolutionaryquantumgeneticalgorithm(CCQGA)isproposedfor
a stochasticjobshopschedulingproblem(SJSSP)withtheobjectivetominimizetheexpectedvalueof
makespan. Threenewstrategiesnamedascompetitivehunter,cooperativesurvivingandthebigfish
eating smallfisharedevelopedinpopulationgrowthprocess.Basedonimprovedco-evolutionideaof
multi-population andconceptsofquantumtheory,thisalgorithmcouldnotonlyadjustpopulationsize
dynamically toincreasethediversityofgenesandavoidprematureconvergence,butalsoacceleratethe
convergence speedwithQ-bitrepresentationandquantumrotationgate.FTbenchmark-basedproblems
where theprocessingtimesaresubjectedtoindependentnormaldistributionsaresolvedeffectively
by CCQGA.TheexperimentresultsachievedbyCCQGAarecomparedwithquantum-inspiredgenetic
algorithm (QGA)andstandardgeneticalgorithm(GA),whichshowsthatCCQGAhasbetterfeasibilityand
effectiveness.
Keywords :
Stochastic , Job shop scheduling , Competitive , Co-evolution algorithm , Genetic Algorithm
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research