Title of article :
Kernel basedsupportvectormachineviasemidefiniteprogramming:Applicationto medical diagnosis
Author/Authors :
Domenico Conforti، نويسنده , , RositaGuido، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
6
From page :
1389
To page :
1394
Abstract :
Support vectormachine(SVM)isawellsoundlearningmethodandarobustclassificationprocedure. Choosing asuitablekernelfunctioninSVMiscrucialforobtaininggoodperformance;thedifficultyis how tochooseasuitabledatatransformationforthegivenproblem.Tothisend,multiplekernelmatrices, each ofthemcorrespondingtoagivensimilaritymeasure,canbelinearlycombined.Inthispaper,the optimal kernelmatrix,obtainedaslinearcombinationofknownkernelmatrices,isgeneratedusinga semidefinite programmingapproach.Asuitablemodelformulationassuresthattheobtainedkernelma- trix ispositivesemidefiniteandisoptimalwithrespecttothedatasetunderconsideration.Theproposed approach hasbeenappliedtosomeveryimportantmedicaldiagnosticdecisionmakingproblemsandthe results obtainedbycarryingoutpreliminarynumericalexperimentsdemonstratedtheeffectivenessof the proposedsolutionapproach.
Keywords :
classification , support vector machines , Semidefinite programming , Medical diagnosis , Kernel function , Machine learning
Journal title :
Computers and Operations Research
Serial Year :
2010
Journal title :
Computers and Operations Research
Record number :
927748
Link To Document :
بازگشت