Title of article :
Kernel basedsupportvectormachineviasemidefiniteprogramming:Applicationto
medical diagnosis
Author/Authors :
Domenico Conforti، نويسنده , , RositaGuido، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
Support vectormachine(SVM)isawellsoundlearningmethodandarobustclassificationprocedure.
Choosing asuitablekernelfunctioninSVMiscrucialforobtaininggoodperformance;thedifficultyis
how tochooseasuitabledatatransformationforthegivenproblem.Tothisend,multiplekernelmatrices,
each ofthemcorrespondingtoagivensimilaritymeasure,canbelinearlycombined.Inthispaper,the
optimal kernelmatrix,obtainedaslinearcombinationofknownkernelmatrices,isgeneratedusinga
semidefinite programmingapproach.Asuitablemodelformulationassuresthattheobtainedkernelma-
trix ispositivesemidefiniteandisoptimalwithrespecttothedatasetunderconsideration.Theproposed
approach hasbeenappliedtosomeveryimportantmedicaldiagnosticdecisionmakingproblemsandthe
results obtainedbycarryingoutpreliminarynumericalexperimentsdemonstratedtheeffectivenessof
the proposedsolutionapproach.
Keywords :
classification , support vector machines , Semidefinite programming , Medical diagnosis , Kernel function , Machine learning
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research