Title of article :
Genetic programmingforanticancertherapeuticresponsepredictionusingthe NCI-60 dataset
Author/Authors :
Francesco Archetti، نويسنده , , IlariaGiordani، نويسنده , , LeonardoVanneschi، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
11
From page :
1395
To page :
1405
Abstract :
Statistical methods,andinparticularmachinelearning,havebeenincreasinglyusedinthedrugdevelop- ment workflow.Amongtheexistingmachinelearningmethods,wehavebeenspecificallyconcernedwith genetic programming.Wepresentageneticprogramming-basedframeworkforpredictinganticancer therapeutic response.WeusetheNCI-60microarraydatasetandwelookforarelationshipbetweengene expressions andresponsestooncologydrugsFluorouracil,Fludarabine,FloxuridineandCytarabine.We aim atidentifying,fromgenomicmeasurementsofbiopsies,thelikelihoodtodevelopdrugresistance. Experimental results,andtheircomparisonwiththeonesobtainedbyLinearRegressionandLeastSquare Regression, hintthatgeneticprogrammingisapromisingtechniqueforthiskindofapplication.More- over, geneticprogrammingoutputmaypotentiallyhighlightsomerelationsbetweengeneswhichcould support theidentificationofbiologicalmeaningfulpathways.Thestructuresthatappearmorefrequently in the“best”solutionsfoundbygeneticprogrammingarepresented.
Keywords :
Regression , Machine learning , Anticancer therapy , microarray data , NCI-60 , Genetic programming
Journal title :
Computers and Operations Research
Serial Year :
2010
Journal title :
Computers and Operations Research
Record number :
927749
Link To Document :
بازگشت