Title of article :
Genetic programmingforanticancertherapeuticresponsepredictionusingthe
NCI-60 dataset
Author/Authors :
Francesco Archetti، نويسنده , , IlariaGiordani، نويسنده , , LeonardoVanneschi، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
Statistical methods,andinparticularmachinelearning,havebeenincreasinglyusedinthedrugdevelop-
ment workflow.Amongtheexistingmachinelearningmethods,wehavebeenspecificallyconcernedwith
genetic programming.Wepresentageneticprogramming-basedframeworkforpredictinganticancer
therapeutic response.WeusetheNCI-60microarraydatasetandwelookforarelationshipbetweengene
expressions andresponsestooncologydrugsFluorouracil,Fludarabine,FloxuridineandCytarabine.We
aim atidentifying,fromgenomicmeasurementsofbiopsies,thelikelihoodtodevelopdrugresistance.
Experimental results,andtheircomparisonwiththeonesobtainedbyLinearRegressionandLeastSquare
Regression, hintthatgeneticprogrammingisapromisingtechniqueforthiskindofapplication.More-
over, geneticprogrammingoutputmaypotentiallyhighlightsomerelationsbetweengeneswhichcould
support theidentificationofbiologicalmeaningfulpathways.Thestructuresthatappearmorefrequently
in the“best”solutionsfoundbygeneticprogrammingarepresented.
Keywords :
Regression , Machine learning , Anticancer therapy , microarray data , NCI-60 , Genetic programming
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research