Title of article :
Singular solutions of a nonlinear equation in bounded domains of R2
Author/Authors :
Habib Mâagli and Lamia Mâatoug، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Pages :
17
From page :
230
To page :
246
Abstract :
We consider the nonlinear problem (P)   u(x) + f (x,u(x)) = 0, x ∈ D \ {0}, u(x) > 0, x ∈ D \ {0}, u(x) ∼ Log 1/|x| near x = 0, u(x) = 0, x ∈ ∂D, where D is a bounded regular Jordan domain in R2 containing 0 and f is a measurable function on D × (0,∞). When the function x → f (x,G(x, 0))/G(x, 0) is in a certain class K, we show the existence of infinitely many solutions of (P). G(x, y) is the Green’s function of the Laplacian in D.  2002 Elsevier Science (USA). All rights reserved. Résumé On considére le problème non-lineaire suivant : (P)   u(x) + f (x,u(x)) = 0, x ∈ D \ {0}, u(x) > 0, x ∈ D \ {0}, u(x) ∼ Log 1/|x| au voisinage de x = 0, u(x) = 0, x ∈ ∂D, où D est un domaine de Jordan borné et régulier contenant 0 et f est une fonction mesurable sur D × (0,∞). On montre que si la fonction x →f (x,G(x, 0))/G(x, 0) est dans une certaine classe K, alors le problème (P) admet une infinité de solutions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2002
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
929966
Link To Document :
بازگشت