Title of article :
Markov operators with a unique invariant measure
Author/Authors :
Andrzej Lasota, Michael C. Mackey، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Pages :
14
From page :
343
To page :
356
Abstract :
LetMbe the set of all finite Borel measures on a Polish space X. Let P be a Markov operator onMand π the transition function corresponding to P. Set Γ (x) = supp π(x, ·), x ∈ X. It is proved that, if P admits a unique invariant measure μ∗, then μ∗(D) = 0 or μ∗( ∞n=0 Γ n(D)) = 1 for every Borel set D such that Γ (D) ⊂ D. Moreover, if P is nonexpansive, then a trajectory of every Markov chain corresponding to P and starting from suppμ∗ is dense in suppμ∗. The last statement fails if we drop nonexpansivity condition.  2002 Elsevier Science (USA). All rights reserved.
Keywords :
Markov operators , Invariant measures , Trajectories , Markov chains
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2002
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
930310
Link To Document :
بازگشت