Title of article :
On the existence of positive solutions of a perturbed Hamiltonian system in RN ✩
Author/Authors :
Claudianor Oliveira Alves، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Pages :
18
From page :
673
To page :
690
Abstract :
Using the Legendre–Fenchel transformation and the Mountain Pass Theorem due to Ambrosetti and Rabinowitz, we establish an existence result for perturbations of periodic and asymptotically periodic semilinear Hamiltonian systems of the type   −Δu + u =W2(x)|v|p−1v in RN, −Δv + v =W1(x)|u|q−1u in RN, u(x), v(x)→0 as|x| →∞, u>0, v>0 inRN, N 2. (PW) Here, the numbers p, q > 1 are below the critical hyperbola if N 3, that is, they satisfy 1/(p + 1) + 1/(q + 1) > (N − 2)/N, while no additional restrictions on p and q are required if N = 2. The functions Wi , i = 1, 2, are bounded positive continuous functions.  2002 Elsevier Science (USA). All rights reserved
Keywords :
positive solutions , Hamiltonian type , elliptic systems
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2002
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
930330
Link To Document :
بازگشت