Title of article :
On uniform approximation by some classical Bernstein-type operators ✩
Author/Authors :
Jes?s de la Cal ? and Javier C?rcamo، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Pages :
14
From page :
625
To page :
638
Abstract :
We investigate the functions for which certain classical families of operators of probabilistic type over noncompact intervals provide uniform approximation on the whole interval. The discussed examples include the Szász operators, the Szász–Durrmeyer operators, the gamma operators, the Baskakov operators, and the Meyer–König and Zeller operators. We show that some results of Totik remain valid for unbounded functions, at the same time that we give simple rates of convergence in terms of the usual modulus of continuity. We also show by a counterexample that the result for Meyer–König and Zeller operators does not extend to Cheney and Sharma operators.  2003 Elsevier Science (USA). All rights reserved.
Keywords :
Modulus of continuity , uniform convergence , gamma distribution , Poisson distribution , Negative binomial distribution , Poisson processes , Gamma processes , Bernstein-type operators , Sz?sz operators , Sz?sz–Durrmeyer operators , Gamma operators , Meyer–K?nig and Zeller operators , Baskakovoperators , Cheney and Sharma operators , Rate ofconvergence
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2003
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
930483
Link To Document :
بازگشت