• Title of article

    Maximin share and minimax envy in fair-division problems

  • Author/Authors

    Marco Dall’Aglio، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2003
  • Pages
    16
  • From page
    346
  • To page
    361
  • Abstract
    For fair-division or cake-cutting problems with value functions which are normalized positive measures (i.e., the values are probability measures) maximin-share and minimax-envy inequalities are derived for both continuous and discrete measures. The tools used include classical and recent basic convexity results, as well as ad hoc constructions. Examples are given to show that the envyminimizing criterion is not Pareto optimal, even if the values are mutually absolutely continuous. In the discrete measure case, sufficient conditions are obtained to guarantee the existence of envy-free partitions.  2003 Elsevier Science (USA). All rights reserved.
  • Keywords
    Cake-cutting , Minimax envy , Maximin share , Equitablepartition , Envy-free , Optimal partition , Fair-division
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2003
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    930554