Title of article
On a generalized James constant ✩
Author/Authors
S. Dhompongsa، نويسنده , , A. Kaewkhao، نويسنده , , and S. Tasena، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2003
Pages
17
From page
419
To page
435
Abstract
We introduce a generalized James constant J(a,X) for a Banach space X, and prove that, if
J(a,X)<(3+a)/2 for some a ∈ [0, 1], then X has uniform normal structure. The class of spaces X
with J(1,X)<2 is proved to contain all u-spaces and their generalizations. For the James constant
J(X) itself, we show that X has uniform normal structure provided that J(X) < (1 + √5)/2, improving
the previous known upper bound at 3/2. Finally, we establish the stability of uniform normal
structure of Banach spaces.
2003 Elsevier Inc. All rights reserved
Keywords
James constant , Uniformly nonsquare space , Uniform normal structure
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2003
Journal title
Journal of Mathematical Analysis and Applications
Record number
930784
Link To Document