Title of article :
The chain rule and a compactness theorem for BV functions in the Heisenberg group Hn ✩
Author/Authors :
Ying-Qing Song، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Pages :
11
From page :
296
To page :
306
Abstract :
At first in the setting of the Heisenberg group we show the chain rule for a function u ∈ BVH(Ω) when composed with a Lipschitz function f :R→R and prove that v = f ◦ u belongs to BVH(Ω) and |DH v| |DH u|. More precisely the following result is shown: DHv = f ( ˜u)∇H uL2n+1 + 2ω2n−1 ω2n+1 f (u+)− f (u−) νuS Q−1 d Ju + f ( ˜u)Dc Hu. Secondly using the chain rule above we prove a compactness theorem for SBVH functions.  2003 Elsevier Inc. All rights reserved.
Keywords :
BVH function , Heisenberg group , Chain rule , Decomposition of a Radon measure , Compactnesstheorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2003
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
930887
Link To Document :
بازگشت