Title of article :
The chain rule and a compactness theorem for
BV functions in the Heisenberg group Hn ✩
Author/Authors :
Ying-Qing Song، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Abstract :
At first in the setting of the Heisenberg group we show the chain rule for a function u ∈ BVH(Ω)
when composed with a Lipschitz function f :R→R and prove that v = f ◦ u belongs to BVH(Ω)
and |DH v| |DH u|. More precisely the following result is shown:
DHv = f ( ˜u)∇H uL2n+1 +
2ω2n−1
ω2n+1 f (u+)− f (u−) νuS
Q−1
d
Ju + f ( ˜u)Dc
Hu.
Secondly using the chain rule above we prove a compactness theorem for SBVH functions.
2003 Elsevier Inc. All rights reserved.
Keywords :
BVH function , Heisenberg group , Chain rule , Decomposition of a Radon measure , Compactnesstheorem
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications