Title of article :
Critical exponent for semilinear damped wave equations in the N-dimensional half space
Author/Authors :
Ryo Ikehata، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Pages :
16
From page :
803
To page :
818
Abstract :
We generalize a previous result of Ikehata (Math. Methods Appl. Sci., in press), which studies the critical exponent problem of a semilinear damped wave equation in the one-dimensional half space, to the general N-dimensional half space case. That is to say, one can show the small data global existence of solutions of a mixed problem for the equation ut t − Δu + ut = |u|p with the power p satisfying p∗(N) = 1 + 2/(N + 1)

Keywords :
semilinear damped wave equation , N-D half space , Criticalexponent , Weighted initial data , Fast decay
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2003
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
930967
بازگشت