Title of article :
On the period five trichotomy of all positive solutions of xn+1 = (p +xn−2)/xn
Author/Authors :
E. Camouzis، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
10
From page :
40
To page :
49
Abstract :
We study the behavior of all positive solutions of the difference equation in the title, where p is a positive real parameter and the initial conditions x−2,x−1,x0 are positive real numbers. For all the values of the positive parameter p there exists a unique positive equilibrium ¯x which satisfies the equation ¯x2 = ¯x +p. We show that if 0 < p < 1 or p 2 every positive bounded solution of the equation in the title converges to the positive equilibrium ¯x. When 0 < p <1 we show the existence of unbounded solutions. When p 2 we show that the positive equilibrium is globally asymptotically stable. Finally we conjecture that when 1
Keywords :
global stability , Periodic solution , Difference equation , boundedness
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931080
بازگشت