Title of article :
An even-order three-point boundary value problem on time scales
Author/Authors :
Douglas R. Anderson، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
12
From page :
514
To page :
525
Abstract :
We study the even-order dynamic equation (−1)nx( ∇)n (t ) = λh(t)f (x(t )), t ∈ [a, c] satisfying the boundary conditions x( ∇)i (a) = 0 and x( ∇)i (c) = βx( ∇)i (b) for 0 i n − 1. The three points a, b, c are from a time scale T, where 0 < β(b − a) < c − a for b ∈ (a, c), β > 0, f is a positive function, and h is a nonnegative function that is allowed to vanish on some subintervals of [a, c] of the time scale.  2003 Elsevier Inc. All rights reserved.
Keywords :
Boundary value problem , Cone , Green’s function , Delta–nabla dynamic equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931113
Link To Document :
بازگشت