Title of article :
Stable functions and Vietoris’ theorem
Author/Authors :
Stephan Ruscheweyh، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
9
From page :
596
To page :
604
Abstract :
An analytic function f (z) in the unit disc D is called stable if sn(f, ·)/f ≺ 1/f holds for all for n ∈ N0. Here sn stands for the nth partial sum of the Taylor expansion about the origin of f , and ≺ denotes the subordination of analytic functions in D. We prove that (1 − z)λ, λ ∈ [−1, 1], are stable. The stability of √(1 + z)/(1 −z) turns out to be equivalent to a famous result of Vietoris on non-negative trigonometric sums. We discuss some generalizations of these results, and related conjectures, always with an eye on applications to positivity results for trigonometric and other polynomials.  2003 Elsevier Inc. All rights reserved.
Keywords :
Stable functions , n-stable functions , Gegenbauer polynomials , Subordination , Computer algebra
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931119
Link To Document :
بازگشت