Title of article :
Analysis of a system of fractional differential
equations
Author/Authors :
Varsha Daftardar-Gejji ? and A. Babakhani، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Abstract :
We prove existence and uniqueness theorems for the initial value problem for the system of
fractional differential equations Dα[¯x(t)− ¯x(0)] = A¯x(t), ¯x(0) = ¯x0, where Dα denotes standard
Riemann–Liouville fractional derivative, 0 < α < 1, ¯x(t) = [x1(t ), . . . , xn(t )]t and A is a square
matrix. The unique solution to this initial value problem turns out to be Eα(tαA) ¯x0, where Eα denotes
the Mittag–Leffler function generalized for matrix arguments. Further we analyze the system
Dα[x¯(t)−x¯(0)] = f¯(t, x¯), x¯(0)=x¯0, 0<α<1, and investigate dependence of the solutions on the
initial conditions.
2004 Elsevier Inc. All rights reserved.
Keywords :
Riemann–Liouville fractional derivative/integral , Fractional differentialequations , Eigenbasis , Real canonical form , Mittag–Leffler function
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications