Title of article :
Maurey–Rosenthal factorization of positive operators and convexity
Author/Authors :
A. Defant، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
20
From page :
771
To page :
790
Abstract :
We show that a Banach lattice X is r-convex, 1 < r <∞, if and only if all positive operators T on X with values in some r-concave Köthe function spaces F(ν) (over measure spaces (Ω, ν)) factorize strongly through Lr (ν) (i.e., T =MgR, where R is an operator from X to Lr (ν) and Mg a multiplication operator on Lr (ν) with values in F). This characterization of r-convexity motivates a Maurey–Rosenthal type factorization theory for positive operators acting between vector valued Köthe function spaces.  2004 Elsevier Inc. All rights reserved
Keywords :
Convexity , Concavity , Positive operator , K?the function space
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931442
Link To Document :
بازگشت