Title of article :
Integral operators on the halfspace in generalized Lebesgue spaces Lp(·), part I
Author/Authors :
L. Diening، نويسنده , , M. R°u?i?cka ?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
13
From page :
559
To page :
571
Abstract :
In this paper we generalize a version of the classical Calderón–Zygmund theorem on principle value integrals in generalized Lebesgue spaces Lp(·) proved in [J. Reine Angew. Math. 563 (2003) 197–220], to kernels, which do not satisfy standard estimates on Rd+1. This result will be used in part II of this paper to prove the classical theorem on halfspace estimates of Agmon, Douglis, and Nirenberg [Comm. Pure Appl. Math. 12 (1959) 623–727] for generalized Lebesgue spaces Lp(·).  2004 Elsevier Inc. All rights reserved
Keywords :
Singular integral operator , Generalized Lebesgue spaces Lp(·) , Calder?n–Zygmund theorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931484
Link To Document :
بازگشت