Title of article :
Isometric reflection vectors in Banach spaces
Author/Authors :
A. Aizpuru، نويسنده , , F.J. Garc?a-Pacheco، نويسنده , , F. Rambla ?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
9
From page :
40
To page :
48
Abstract :
The aim of this paper is to study the set IrX of isometric reflection vectors of a real Banach space X. We deal with geometry of isometric reflection vectors and parallelogram identity vectors, and we prove that a real Banach space is a Hilbert space if the set of parallelogram identity vectors has nonempty interior. It is also shown that every real Banach space can be decomposed as an I r -sum of a Hilbert space and a Banach space with some points which are not isometric reflection vectors. Finally, we give a new proof of the Becerra–Rodríguez result: a real Banach space X is a Hilbert space if and only if IrX is not rare.  2004 Elsevier Inc. All rights reserved.
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931497
Link To Document :
بازگشت