Title of article :
Iterative equations in Banach spaces
Author/Authors :
Jacek Tabor، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
12
From page :
651
To page :
662
Abstract :
Let X be a Banach space, let K(X) := f :X→X Lipschitz: f − id sup <∞ , and let P :K(X)→K(X), F ∈ K(X). By applying the Banach contraction principle we prove that if P is sufficiently close (in a certain sense) to the identity then the equation Pf = F has a unique solution f . As a corollary we obtain results on iterative equations of the types i Aif i(x) = F(x) or i Aif φi(x) = F(x) with operator coefficients in Banach spaces.  2004 Published by Elsevier Inc.
Keywords :
Iterative functional equation , Fixed point method
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931543
Link To Document :
بازگشت