• Title of article

    Quadratic Convergence in Period Doubling to Chaos for Trapezoid Maps

  • Author/Authors

    Li Wang*، نويسنده , , W. A. Beyer and J. D. Louck، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 1998
  • Pages
    24
  • From page
    1
  • To page
    24
  • Abstract
    The trapezoid map ge x. is defined for fixed eg 0, 1. by ge x.sxre for xgw0, ex, ge x.s1 for xg e, 2ye., and ge x.s 2yx.re for xgw2ye, 2x. For a given e and the associated one-parameter family lge x.: 1-l -24, letting ln e. be the smallest value of l )1 for which a fixed xg e, 2ye., say xc, is a periodic point of period 2n, Beyer and Stein conjectured in 1982 that, for any e-1, the parameter sequence ln e.4`1 is quadratically convergent. In this paper the conjecture is proved. Further, the quadratic convergence is generalized to nonisosceles trapezoid maps
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    1998
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    931874