Title of article :
B-Convexity, the Analytic Radon–Nikodym Property, and Individual Stability of C0-Semigroups
Author/Authors :
S.-Z. Huang* and J. M. A. M. van Neerven†، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1999
Pages :
20
From page :
1
To page :
20
Abstract :
Let T D ”Tt‘•t 0 be a C0-semigroup on a Banach space X, with generator A and growth bound !. Assume that x0 2 X is such that the local resolvent 7! R ;A‘x0 admits a bounded holomorphic extension to the right half-plane ”Re >0•. We prove the following results: (i) If X has Fourier type p 2 1; 2“, then limt!1 Tt‘ 0 − A‘− x0 D 0 for all > 1=p and 0 > !. (ii) If X has the analytic RNP, then limt!1 Tt‘ 0 − A‘− x0 D 0 for all > 1 and 0 > !. (iii) If X is arbitrary, then weak-limt!1 Tt‘ 0 − A‘− x0 D 0 for all > 1 and 0 > !. As an application we prove a Tauberian theorem for the Laplace transform of functions with values in a B-convex Banach space.
Keywords :
resolvent estimates , B-convex , analytic Radon–Nikodym property , Fourier type , Tauberian theorems , individual stability , C0-semigroup
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
1999
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
932000
Link To Document :
بازگشت