Title of article :
A Comparison Inequality for Sums of
Independent Random Variables
Author/Authors :
Stephen J. Montgomery-Smith1، نويسنده , , Alexander R. Pruss، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Abstract :
We give a comparison inequality that allows one to estimate the tail probabilities
of sums of independent Banach space valued random variables in terms of
those of independent identically distributed random variables. More precisely, let
X1 Xn be independent Banach-valued random variables. Let I be a random
variable independent of X1 Xn and uniformly distributed over 1 n . Put
X1 = XI , and let X2 · · · Xn be independent identically distributed copies of X1.
Then, P X1 +· · ·+Xn ≥ λ ≤ cP X1 +· · ·+ Xn ≥ λ/c for all λ ≥ 0, where c
is an absolute constant.
Keywords :
comparison inequalities , sumsof independent identically distributed random variables , rates of convergence in thelaw of large numbers , Sums of independent random variables
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications