Title of article :
A Comparison Inequality for Sums of Independent Random Variables
Author/Authors :
Stephen J. Montgomery-Smith1، نويسنده , , Alexander R. Pruss، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
8
From page :
35
To page :
42
Abstract :
We give a comparison inequality that allows one to estimate the tail probabilities of sums of independent Banach space valued random variables in terms of those of independent identically distributed random variables. More precisely, let X1 Xn be independent Banach-valued random variables. Let I be a random variable independent of X1 Xn and uniformly distributed over 1 n . Put X1 = XI , and let X2 · · · Xn be independent identically distributed copies of X1. Then, P X1 +· · ·+Xn ≥ λ ≤ cP X1 +· · ·+ Xn ≥ λ/c for all λ ≥ 0, where c is an absolute constant.
Keywords :
comparison inequalities , sumsof independent identically distributed random variables , rates of convergence in thelaw of large numbers , Sums of independent random variables
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
932434
Link To Document :
بازگشت