Title of article :
Nonconvex Minimization Problems for Functionals Defined on Vector Valued Functions
Author/Authors :
Graziano Crasta، نويسنده , , Annalisa Malusa، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
20
From page :
538
To page :
557
Abstract :
We consider the minimization problem min H fŽ Žx.. hŽ Žx.. dx, W01, 1ŽBRn, m.BRn where BRn is the ball of n centered at the origin and with radius R 0, f is a lower semicontinuous function, and h is a convex function. We give sufficient conditions for the existence and uniqueness of minimizers. Our technique relies on a detailed knowledge of the properties of the solutions to the convexified problem, obtained using the corresponding Euler Lagrange inclusions.
Keywords :
Existence , Uniqueness , Euler Lagrange inclusions , radially symmetric solutions , nonconvex problems , calculus of variations , noncoercive problems
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
932466
Link To Document :
بازگشت