Title of article :
Uniqueness for Near-Constant Data in Fourth-Order Inverse Eigenvalue Problems1
Author/Authors :
Albert Schueller، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
13
From page :
658
To page :
670
Abstract :
Let L p u = d4u/dx4 − d/dx p1 du/dx + p2u u 0 = u 0 = u 1 = u 1 = 0 where p ∈ L2 0 1 × L2 0 1 .W e show that for near constant coefficients, if p is even about 1/2 and L p and L ˜p have the same eigenvalues, then knowledge of the first coefficient uniquely determines the second up to average value.F urther, we show that knowledge of the second coefficient uniquely determines the first.W e derive precise eigenfunction asymptotics using resolvent perturbation theory and prove the result using a simple perturbation of basis argument.
Keywords :
inverse , eigenvalue , differential equations , BEAM
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
932637
Link To Document :
بازگشت