Title of article :
Uniqueness for Near-Constant Data in
Fourth-Order Inverse Eigenvalue Problems1
Author/Authors :
Albert Schueller، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Abstract :
Let L p u = d4u/dx4 − d/dx p1
du/dx + p2u u 0 = u 0 = u 1 =
u 1 = 0 where p ∈ L2 0 1 × L2 0 1 .W e show that for near constant coefficients,
if p is even about 1/2 and L p and L ˜p have the same eigenvalues,
then knowledge of the first coefficient uniquely determines the second up to average
value.F urther, we show that knowledge of the second coefficient uniquely
determines the first.W e derive precise eigenfunction asymptotics using resolvent
perturbation theory and prove the result using a simple perturbation of basis
argument.
Keywords :
inverse , eigenvalue , differential equations , BEAM
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications