Title of article :
Global Asymptotic Stability in Some
Discrete Dynamical Systems
Author/Authors :
Nicole Kruse and Tim Nesemann، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1999
Abstract :
For a discrete dynamical system xnq1sTxn on M;Rr some general conditions
will be specified under which the unique equilibrium is globally asymptotically
stable. As a special result we obtain the strong negative feedback property
established in A. M. Amleh, N. Kruse, and G. Ladas J. Differ. Equations Appl. to
appear.. Finally we apply our result to show that the equilibrium x*s1 of the
Putnam difference equation,
xnqxny1qxny2xny3 xnq1s xnxny1qxny2qxny3 ,
with positive initial conditions x0, . . . , xy3 is globally asymptotically stable.
Keywords :
strongnegative feedback property , Putnam equation , discrete dynamical systems , Difference equations , part-metric
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications