Title of article :
Mean and Almost Everywhere Convergence of Fourier]Neumann Series
Author/Authors :
O´scar CiaurriU and Jos´e J. Guadalupe†، نويسنده , , Mario P´erez†، نويسنده , , Juan L. Varona، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1999
Pages :
23
From page :
125
To page :
147
Abstract :
Let J denote the Bessel function of order m. The functions m xya r2yb r2y1r2J x1r2 ., ns0, 1, 2, . . . , form an orthogonal system in aqbq2 nq1 L2 0, `.,xaqbdx. when a qb )y1. In this paper we analyze the range of p, a, and b for which the Fourier series with respect to this system converges in the L p 0, `., xa dx.-norm. Also, we describe the space in which the span of the system is dense and we show some of its properties. Finally, we study the almost everywhere convergence of the Fourier series for functions in such spaces.
Keywords :
Fourier series , Neumann series , Hankel transform , mean convergence , Bessel functions , almost everywhere convergence
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
1999
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
932827
Link To Document :
بازگشت