Title of article :
Distributional Chaos on Compact Metric Spaces via Speci cation Properties1
Author/Authors :
Mitchel A. Sklar، نويسنده , , J. Sm tal، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2000
Pages :
8
From page :
181
To page :
188
Abstract :
In this paper we show that a continuous function on a compact metric space exhibits distributional chaos as introduced in [B. Schweizer and J. Sm tal, Trans. Amer. Math. Soc. 344 (1994), 737–754] and elucidated in [B. Schweizer, A. Sklar, and J. Smital, to appear] if the function has either a weaker form of the speci cation property (see [M. Denker, C. Grillenberger, and K. Sigmund, Springer Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, New York/Heidelberg/Berlin, 1976]) or the generalized speci cation property introduced in [F. Balibrea, B. Schweizer, A. Sklar, and J. Sm tal, to appear]. In particular, any Anosov diffeomorphism is distributionally chaotic, regardless of the fact that in this case the trajectories of a.e. pair of points exhibit regular, non-chaotic behavior
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2000
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933027
Link To Document :
بازگشت