Title of article :
Generalized Stability of Isometries
Author/Authors :
Gregor Dolinar، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2000
Pages :
18
From page :
39
To page :
56
Abstract :
Let X and Y be real Banach spaces and let « , pG0. A mapping f : XªY is . < 5 . .5 5 5< 5 5 p called an « , p -isometry if f x yf y y xyy F« xyy holds for all x, ygX. A pair X, Y.is p-stable with respect to isometries if there exists a function d: w0,`.ªw0, `.with lim d «.s0 such that for every surjective «ª0 « , p.-isometry f : XªY there is a surjective isometry U: XªY satisfying the estimate 5 f x.yU x.5Fd «.5x5p, xgX. We show that every pair of Banach spaces X, Y.is p-stable for 0Fp-1. The pair R2, R2. is not 1-stable. When p)1 a superstability phenomenon occurs for finite-dimensional Banach spaces
Keywords :
p.-isometry , stability of isometries , «
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2000
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933036
Link To Document :
بازگشت