Title of article :
Pontryagin Duality for Spaces
of Continuous Functions
Author/Authors :
Salvador Hern´andez1 and Vladimir Uspenskij2، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2000
Abstract :
A topological abelian group G is P-reflexi¨e if the natural homomorphism of G
to its Pontryagin bidual group is a topological isomorphism. Let Cp X. be the
space of continuous functions with the topology of pointwise convergence. We
investigate for what spaces X the groupCp X.is P-reflexive. We show that: 1.if
Cp X.is P-reflexive, then X is a P-space; 2.there exists a non-discrete space X
such thatCp X.is P-reflexive; 3.there exists a P-space X such thatCp X.is not
P-reflexive; 4. there exists a simple space X for which the question of whether
Cp X.is P-reflexive is undecidable in ZFC.
Keywords :
Spaces of continuous functions , Pontryagin]van Kampen duality , caliber. , P-space
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications