Title of article
Strong Convergence of Averaged Approximants for Lipschitz Pseudocontractive Maps
Author/Authors
Chika Moore1، نويسنده , , B. V. C. Nnoli2، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2001
Pages
10
From page
269
To page
278
Abstract
Let T be a Lipschitzian pseudocontractive self-mapping of a closed convex and
bounded subset K of a Banach space E which is both uniformly convex and
q-uniformly smooth such that the set FŽT. of fixed points of T is nonempty. Then
FŽT. is a sunny nonexpansive retract of K. If U is the sunny nonexpansive
retraction of K onto FŽT., is any point of K, and an4 n 0 a real sequence in
Ž0, 1 , then the sequence xn4 n 0 in K defined by
1 n
xn an Ž1 an.n 1 Ý Ž1 aj.I ajT xn j 0
for n 0, 1, 2, . . . , converges strongly to U . No compactness assumption is made
on K.
Keywords
pseudocontraction , uniformly convex spaces , sunny nonexpansive retraction. , q-uniformly smooth spaces , Lipschitzian
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2001
Journal title
Journal of Mathematical Analysis and Applications
Record number
933212
Link To Document