Title of article :
Complex Zeros of Trigonometric Polynomials with Standard Normal Random Coefficients
Author/Authors :
K.F arahmand and A.Grigorash 1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
10
From page :
554
To page :
563
Abstract :
In this paper, we obtain an exact formula for the average density of the distribution of complex zeros of a random trigonometric polynomial η0 + η1 cos θ + η2 cos 2θ + · · · + ηn cos nθ in 0 2π , where the coefficients ηj = aj + ιbj , and aj n j=1 and bj n j=1 are sequences of independent normally distributed random variables with mean 0 and variance 1.W e also provide the limiting behaviour of the zeros density function as n tends to infinity.The corresponding results for the case of random algebraic polynomials are known
Keywords :
random trigonometricpolynomials , coordinate transform , Jacobian of transformation , Number of complex zeros , random algebraic polynomials , Complex roots , Adler’s theorem , Real roots , density of zeros.
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933317
Link To Document :
بازگشت