Title of article :
Fredholm Alternative for the p-Laplacian in Higher Dimensions
Author/Authors :
Pavel Dr´abek1، نويسنده , , Gabriela Holubov´a1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
13
From page :
182
To page :
194
Abstract :
In this paper we characterize the set of all right-hand sides h ∈ C for which the boundary value problem pu + λ1 u p−2u = h in u =0 on∂ has at least one weak solution u ∈ W 1 p 0 . Here 1 < p < 2, and λ1 > 0 is the first eigenvalue of the p-Laplacian. In particular, we prove that for hϕ1 = 0 this problem is solvable and the energy functional Eh u = 1 p ∇u p − λ1 p u p + hu is unbounded from below. 
Keywords :
Upperand lower solutions , Palais–Smale condition , Saddle point theorem , p-laplacian , Fredholm alternative , Leray–Schauder degree
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933342
Link To Document :
بازگشت