Title of article :
Some Further Generalizations of the Hyers Ulam Rassias Stability of Functional Equations1
Author/Authors :
Wang Jian، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
18
From page :
406
To page :
423
Abstract :
In this paper we study the Hyers Ulam Rassias stability theory by considering the cases where the approximate remainder is defined by fŽx y. fŽx. fŽy. Žx, y. Ž x, y G., Ž1. fŽx y. gŽx. hŽy. Žx, y. Ž x, y G., Ž2. 2fŽŽx y.1 2. fŽx. fŽy. Žx, y. Ž x, y G., Ž3. where ŽG, . is a certain kind of algebraic system, E is a real or complex Hausdorff topological vector space, and f, g, h are mappings from G into E. We prove theorems for the Hyers Ulam Rassias stability of the above three kinds of functional equations and obtain the corresponding error formulas.
Keywords :
Hyers Ulam Rassias stability , Cauchy equation , Pexider equation , Jensen equation , approximate remainder.
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933356
Link To Document :
بازگشت