Title of article :
Paley–Wiener-Type Theorems for a Class of Integral Transforms
Author/Authors :
Vu Kim Tuan، نويسنده , , Ahmed I. Zayed1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Pages :
27
From page :
200
To page :
226
Abstract :
A characterization of weighted L2 I spaces in terms of their images under various integral transformations is derived, where I is an interval (finite or infinite). This characterization is then used to derive Paley–Wiener-type theorems for these spaces. Unlike the classical Paley–Wiener theorem, our theorems use real variable techniques and do not require analytic continuation to the complex plane. The class of integral transformations considered is related to singular Sturm–Liouville boundary-value problems on a half line and on the whole line
Keywords :
Paley–Wiener theorem , Singular Sturm–Liouville problems , Weber transform , Kontorovich–Lebedev transform. , Hankel transform , Fouriertransform , Jacobi transform
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2002
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933466
Link To Document :
بازگشت