Title of article :
Paley–Wiener-Type Theorems for a Class of
Integral Transforms
Author/Authors :
Vu Kim Tuan، نويسنده , , Ahmed I. Zayed1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Abstract :
A characterization of weighted L2 I spaces in terms of their images under various
integral transformations is derived, where I is an interval (finite or infinite).
This characterization is then used to derive Paley–Wiener-type theorems for these
spaces. Unlike the classical Paley–Wiener theorem, our theorems use real variable
techniques and do not require analytic continuation to the complex plane. The
class of integral transformations considered is related to singular Sturm–Liouville
boundary-value problems on a half line and on the whole line
Keywords :
Paley–Wiener theorem , Singular Sturm–Liouville problems , Weber transform , Kontorovich–Lebedev transform. , Hankel transform , Fouriertransform , Jacobi transform
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications