• Title of article

    On Leibniz series defined by convex functions

  • Author/Authors

    Vlad Timofte، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2004
  • Pages
    12
  • From page
    160
  • To page
    171
  • Abstract
    It is shown that for every α >0, we have ∞ k=n+1 (−1)k−1 kα = 1 2(n +θn)α for some strictly decreasing sequence (θn)n 1 such that 1 2 < θn < 1 2 1 + 1 2n + 1 α+1 , hence with limn→∞θn = 12 . This is only a particular case of more general new results on Leibniz series defined by convex functions.  2004 Elsevier Inc. All rights reserved.
  • Keywords
    Leibniz series , Error estimate , Partial sum , Convex function
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2004
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    933576