Title of article
On Leibniz series defined by convex functions
Author/Authors
Vlad Timofte، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2004
Pages
12
From page
160
To page
171
Abstract
It is shown that for every α >0, we have
∞
k=n+1
(−1)k−1
kα
=
1
2(n +θn)α
for some strictly decreasing sequence (θn)n 1 such that
1
2
< θn <
1
2 1 +
1
2n + 1 α+1
,
hence with limn→∞θn = 12
. This is only a particular case of more general new results on Leibniz
series defined by convex functions.
2004 Elsevier Inc. All rights reserved.
Keywords
Leibniz series , Error estimate , Partial sum , Convex function
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2004
Journal title
Journal of Mathematical Analysis and Applications
Record number
933576
Link To Document