Abstract :
Let f : [0, 1] × R2 → R be a function satisfying Carathéodory’s conditions and (1 − t)e(t) ∈
L1(0, 1). Let ξi
∈ (0, 1), ai
∈ R, i = 1, . . . , m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 be given. This
paper is concerned with the problem of existence of a C1[0, 1) solution for the m-point boundary
value problem
x
= f
t,x(t),x
(t )
+ e(t ), 0 < t <1,
x
(0) = 0, x(1) =
m −2
i=1
aix(ξi ).
The proof of our main result is based upon the Leray–Schauder continuation theorem.
2004 Elsevier Inc. All rights reserved.
Keywords :
singular boundary value problem , Green’sfunction , Leray–Schauder continuation theorem , Existence