Title of article :
Unique continuation property for a higher order
nonlinear Schrödinger equation
Author/Authors :
X. Carvajal، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
We prove that, if a sufficiently smooth solution u to the initial value problem associated with the
equation
∂t u +iα∂2
x u + β∂3
x u + iγ |u|2u +δ|u|2∂xu + u2∂xu = 0, x,t∈ R,
is supported in a half line at two different instants of time then u ≡ 0. To prove this result we derive
a new Carleman type estimate by extending the method introduced by Kenig et al. in [Ann. Inst.
H. Poincaré Anal. Non Linéaire 19 (2002) 191–208].
2004 Elsevier Inc. All rights reserved
Keywords :
Schr?dinger equation , Uniquecontinuation property , Compact support , Smooth solution , Korteweg–de Vries equation
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications