Title of article :
A priori bounds and complete blow-up of positive solutions of indefinite superlinear parabolic problems
Author/Authors :
Pavol Quittner، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
18
From page :
614
To page :
631
Abstract :
e study a priori estimates of positive solutions of the equation ∂tu−Δu = λu+a(x)up, x ∈ Ω, t > 0, satisfying the homogeneous Dirichlet boundary conditions. Here Ω is a bounded domain in Rn, λ ∈ R,p >1 is subcritical, a ∈ C( ¯ Ω) changes sign and a,p satisfy some additional technical hypotheses. Assume that the solution u blows up in a finite time T and the setΩ + := {x ∈ Ω: a(x) > 0} is connected. Using our a priori bounds, we show that u blows up completely in Ω + at t = T and the blow-up time T depends continuously on the initial data.  2004 Elsevier Inc. All rights reserved.
Keywords :
A priori estimate , Complete blow-up* , Indefinite superlinear parabolic problem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2005
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933782
Link To Document :
بازگشت