Title of article :
Precise rates in the law of the logarithm
in the Hilbert space
Author/Authors :
Wei Huang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
Let {X,Xn; n 1} be a sequence of i.i.d. random variables taking values in a real separable
Hilbert space (H, · ) with covariance operator Σ, and set Sn = X1 +· · ·+Xn, n 1. Let an =
o(
√
n/ log n). We prove that, for any 1 < r <3/2 and a >−d/2,
lim
ε
√
r−1
ε2 − (r −1)
a+d/2
∞
n=1
nr−2(log n)aP
Sn σφ(n)ε + an
= Γ
−1(d/2)K(Σ)(r − 1)(d−2)/2Γ (a +d/2)
holds if
EX = 0, E
X 2r
log X
a−r
<∞.
2004 Elsevier Inc. All rights reserved.
Keywords :
Tail probabilities of sums of i.i.d. random variables , Complete convergence , strong approximation , The law of thelogarithm
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications