Title of article :
Hilbert space structure and positive operators
Author/Authors :
Dimosthenis Drivaliaris، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
6
From page :
560
To page :
565
Abstract :
Let X be a real Banach space. We prove that the existence of an injective, positive, symmetric and not strictly singular operator from X into its dual implies that either X admits an equivalent Hilbertian norm or it contains a nontrivially complemented subspace which is isomorphic to a Hilbert space. We also treat the nonsymmetric case.  2004 Elsevier Inc. All rights reserved
Keywords :
Positive operator , Hilbert space characterization , Complemented subspace , Accretive operator , Symmetric operator , equivalent norm
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2005
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933836
Link To Document :
بازگشت