Title of article :
The stability of a cubic type functional equation
with the fixed point alternative
Author/Authors :
Yong-Soo Jung، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
In this note we investigate the generalized Hyers–Ulam–Rassias stability for the new cubic type
functional equation f (x +y +2z)+f (x +y −2z)+f (2x)+f (2y) = 2[f (x +y)+2f (x +z)+ 2f (x − z) + 2f (y + z) + 2f (y − z)] by using the fixed point alternative. The first systematic study
of fixed point theorems in nonlinear analysis is due to G. Isac and Th.M. Rassias [Internat. J. Math.
Math. Sci. 19 (1996) 219–228].
2004 Elsevier Inc. All rights reserved.
Keywords :
stability , Cubic function , Fixed point alternative
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications