Title of article :
Subnormality of Bergman-like weighted shifts
Author/Authors :
Ra?l E. Curto، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
9
From page :
334
To page :
342
Abstract :
For a, b, c, d 0 with ad − bc > 0, we consider the unilateral weighted shift S(a,b, c,d) with weights αn := an+b cn+d (n 0). Using Schur product techniques, we prove that S(a,b, c,d) is always subnormal; more generally, we establish that for every p 1, all p-subshifts of S(a,b, c,d) are subnormal. As a consequence, we show that all Bergman-like weighted shifts are subnormal.  2005 Elsevier Inc. All rights reserved
Keywords :
p-period subsequences , p-subshifts , Bergman-like weighted shifts , Schur product techniques
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2005
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933977
Link To Document :
بازگشت